
remote sensing  

Article

Chimera: A Multi-Task Recurrent Convolutional
Neural Network for Forest Classification and
Structural Estimation

Tony Chang 1,*,† , Brandon P. Rasmussen 1,†, Brett G. Dickson 1,2,† and Luke J. Zachmann 1,2,†

1 Conservation Science Partners, Inc., 11050 Pioneer Trail, Suite 202, Truckee, CA 96161, USA;
brandon@csp-inc.org (B.P.R.); brett@csp-inc.org (B.G.D.); luke@csp-inc.org (L.J.Z.)

2 Lab of Landscape Ecology and Conservation Biology, Landscape Conservation Initiative,
Northern Arizona University, Box 5694, Flagstaff, AZ 86011, USA

* Correspondence: tony@csp-inc.org; Tel.: +1-530-214-8905
† These authors contributed equally to this work.

Received: 8 March 2019; Accepted: 25 March 2019; Published: 29 March 2019
����������
�������

Abstract: More consistent and current estimates of forest land cover type and forest structural metrics
are needed to guide national policies on forest management, carbon sequestration, and ecosystem
health. In recent years, the increased availability of high-resolution (<30 m) imagery and advancements
in machine learning algorithms have opened up a new opportunity to fuse multiple datasets of varying
spatial, spectral, and temporal resolutions. Here, we present a new model, based on a deep learning
architecture, that performs both classification and regression concurrently, thereby consolidating what
was previously several independent tasks and models into one stream. The model, a multi-task
recurrent convolutional neural network that we call the Chimera, integrates varying resolution, freely
available aerial and satellite imagery, as well as relevant environmental factors (e.g., climate, terrain) to
simultaneously classify five forest cover types (‘conifer’, ‘deciduous’, ‘mixed’, ‘dead’, ‘none’ (non-forest))
and to estimate four continuous forest structure metrics (above ground biomass, quadratic mean
diameter, basal area, canopy cover). We demonstrate the performance of our approach by training an
ensemble of Chimera models on 9967 georeferenced (true locations) Forest Inventory and Analysis
field plots from the USDA Forest Service within California and Nevada. Classification diagnostics for
the Chimera ensemble on an independent test set produces an overall average precision, recall, and
F1-score of 0.92, 0.92, and 0.92. Class-wise F1-scores were high for ‘none’ (0.99) and ‘conifer’ (0.85)
cover classes, and moderate for the ‘mixed’ (0.74) class samples. This demonstrates a strong ability
to discriminate locations with and without trees. Regression diagnostics on the test set indicate very
high accuracy for ensembled estimates of above ground biomass (R2 = 0.84, RMSE = 37.28 Mg/ha),
quadratic mean diameter (R2 = 0.81, RMSE = 3.74 inches), basal area (R2 = 0.87, RMSE = 25.88 ft2/ac),
and canopy cover (R2 = 0.89, RMSE = 8.01 percent). Comparative analysis of the Chimera ensemble
versus support vector machine and random forest approaches demonstrates increased performance
over both methods. Future implementations of the Chimera ensemble on a distributed computing
platform could provide continuous, annual estimates of forest structure for other forested landscapes at
regional or national scales.

Keywords: remote sensing; recurrent convolutional neural networks; forest structure; forest
classification; high resolution imagery; NAIP; multi-task learning

1. Introduction

Accurate estimates of above ground biomass (AGB) of vegetation in forests are fundamental for
quantifying and monitoring forest conditions and trends. AGB and other forest structure metrics
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provide baseline information required to derive estimates of available wood supply, habitat quality
for wildlife, and fire threat, among other ecosystem attributes [1–4]. Such information can help
guide, for example, national policies on forest management, carbon sequestration, and ecosystem
health [5]. While in-situ measurements can provide a direct local-scale quantification of forest structure
attributes, they can also be cost prohibitive, time consuming, and limited in spatial extent [6]. Therefore,
utilization of widely available remotely sensed data with new modeling methods have become an
essential approach for estimating AGB and other forest metrics in recent decades [7].

In recent years, advanced methods utilizing satellite or airborne sensor technology have resulted in
regional and global-scale estimates of forest structure [8–12]. These sensors range from very high spatial
resolution optical/laser datasets (Quickbird and airborne LiDAR) to moderate or low spatial resolution
datasets (Landsat, radar, and MODIS), each with their own advantages and disadvantages [7,13].
Airborne LiDAR is currently the most advanced platform and has recently become ubiquitous in the
literature. This is due to the high accuracy in forest structure metrics estimation produced by its very
high spatial resolution (sub 1-m), and its ability to represent three-dimensional structure with point
clouds [14]. However, despite its growing usage, airborne LiDAR acquisitions are costly, limited in
spatial and temporal coverage, and can contain fly-over data gaps, thus limiting their utility for large
continuous regional analyses of forest structure [7].

Landsat has been the most widely used sensor to measure forest structure due to its free
availability, medium temporal resolution (16-day return interval), and effective global spatial
coverage [15]. The wall-to-wall access of data globally has led to advancements in understanding not
only of the patterns and dynamics of AGB, but also of net primary productivity and forest canopy cover
change dynamics [9,16]. Yet, its moderate spatial resolution (30-m) has led to issues of “data saturation,”
in which a single pixel’s reflectance has high uncertainty and/or underestimates at AGB values above
150 Mg/ha [1,17,18]. This is due to mature forests often containing a complex mixed age structure,
resulting in canopy layering, which can be difficult to discern at a 30-m spatial resolution [19]. One data
source that has the potential to resolve issues with Landsat’s data saturation and LiDAR’s limited
coverage is the USDA National Agriculture Imagery Program (NAIP) [20]. Since 2002, the NAIP
program has provided freely accessible, 1-m resolution aerial photography, approximately every two
years and for each state in the conterminous US [20]. Using texture/pattern recognition software,
such high resolution imagery can help to overcome data saturation issues and provide better estimates
of forest structure metrics [21,22].

In the past couple of decades, development of newer machine learning methods, including
deep learning, have led to an explosion of computer vision research, lending itself to the creation
of complex and computationally efficient relationship models in the field of remote sensing [23–29].
One application for which deep learning is particularly well-suited is image interpretation and pattern
recognition with spatial data through use of convolutional neural networks (CNN) [30]. CNNs have
proven to outperform all other existing methods when applied to these tasks [31–33]. Yet, this method
has not been readily adopted for forest metric estimation, such as AGB [1]. Predictions of forest
structure metrics have been shown to improve when including image textures as predictors, e.g., gray
level co-occurrence matrix (GLCM), standard deviation of gray levels (SDGL). However, these, and
other more complex textural features require laborious hand-crafting to identify and implement in
model fitting [34–36]. CNNs have the ability to identify similar relevant image textures from the data
alone without human assistance, which allows them to be applied to solve generalized image feature
detection problems [32,37]. Additionally, the advancement of recurrent CNNs (RCNN), convolutional
neural networks that include a time dependent layer, allows identified image texture spaces to be
ordered in sequence [38,39]. The ability of RCNNs to recognize patterns in multi-dimensional domains
that have both time and space components demonstrates promise with object recognition in a wide
range of remote sensing problems, from classification to segmentation [40–42].

With the rapid adoption of CNNs for solving computer vision problems, additional advanced
approaches have been developed to improve predictive accuracy, which include multi-task learning
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and ensembling. Multi-task learning is a method in which a neural network is trained to perform two
or more similar tasks, such as identifying road characteristics while predicting steering direction for an
automated driving system [43]. This shared task method of learning has been demonstrated to increase
predictive ability for each individual task [44]. Ensembling, the technique of using multiple models
together to make a single prediction, has also been demonstrated to increase predictive ability of many
machine learning approaches, by reducing the bias of any single model prediction [45]. These technical
advancements and characteristics present an opportunity to apply them in an ensemble of multi-task
RCNNs as a case study, and test the ability of such an architecture to classify forest cover and predict
AGB and other forest structure metrics against more conventional approaches.

In this study, we introduce an ensemble of individual RCNN models called “Chimera” (together
called the Chimera ensemble, or CE) to perform a data fusion of high resolution NAIP imagery,
moderate resolution time-varying Landsat, and ancillary climate and terrain (ANC) variables, and
to build prediction tiles which can then be reassembled for spatially explicit mapping of larger areas.
We present performance metrics based on field plots collected from the USDA forest service forest
inventory and analysis (FIA) program dataset.

Objectives

The main objective of this study is to measure the performance of a novel multi-task RCNN
architecture which simultaneously classifies forest and land cover (‘conifer’, ‘deciduous’, ‘mixed’,
‘dead’, or ‘none’) and estimates forest structure metrics (AGB, quadratic mean diameter (QMD), basal
area, and canopy cover). Our performance experiments will involve: (1) comparing the different
combinations of input datasets, specifically, the impact of including high resolution (1-m) imagery;
(2) comparing the RCNN architecture with more commonly used random forest (RF) and support
vector machine (SVM) models, with similar inputs; (3) assessing the potential improvement with
ensembling of RCNN models compared to an individual best fit model. It is hoped that these objectives
(Figure 1) will better inform the application of deep learning approaches in forest structure and type
estimation, and present a potential architecture upon which future modeling efforts might improve.

Figure 1. Flowchart of study workflow and major objectives.

2. Materials and Methods

2.1. Region of Analysis

California and Nevada were chosen as the region of analysis for data sampling and modeling
(Figure 2). The California–Nevada region embodies a wide gradient of elevation from −86 m in
Death Valley to 4421 m at the summit of Mt. Whitney. In California, about 40% of the area (approx.
13.35 million hectares) is covered by forests [46], while Nevada contains the largest national forest in
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the lower 48 states, the 6.3-million acre Humboldt–Toiyabe National Forest [47]. Both states contain a
wide variety of ecosystems including alpine, montane and subalpine forests, coastal forests, mixed
conifer-deciduous forests, chaparral, pinyon-juniper woodlands, and desert scrub. This variety of forest
ecotypes make these states an excellent case study for forest structure estimation over an extensive,
heterogeneous region.

Figure 2. Case study region of California and Nevada for training and testing the Chimera model.
The region of interest provides high variability of forested and non-forested cover types. Image
variability creates a range of challenges for estimation of forest structure metrics. Training (blue) and
testing (red) Forest Inventory and Analysis (FIA) plot accurate estimates of above ground biomass
(AGB)’s are displayed here as scaled dots (minimum = 0 Mg/ha, maximum = 3240.2 Mg/ha) to
demonstrate range of spatial variability within the study region (locations here are approximate to
maintain FIA spatial confidentiality).

2.2. Predictor Variables—Optical Data

Our input variables for the RCNN architecture are formed from a combination of four different,
open-source remote sensing datasets available in the Google Earth Engine (GEE) [48]. These datasets
(NAIP imagery, LANDSAT imagery, PRISM climate data, and USGS NED terrain data) are combined
across different spatial and temporal resolutions to form individual tensors (i.e., multi-dimensional
array), each approximating a single 120 × 120-m FIA field measured sample for each of our predictor
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variables (Figure A3). We chose the 120 × 120-m size to maximize the inclusion of the sampled area
while allowing for any potential mismatches in either imagery georeferencing, or FIA plot location [49].

2.2.1. NAIP (National Agricultural Imagery Program)

USDA NAIP images are mostly cloud-free image tiles collected across the continental United
States during the summer months by aerial fly-over in frequencies ranging from 5 years (in some rural
areas) to 1 year [20]. NAIP image tiles are sized at 3.75 × 3.75 arc-minutes (approx. 6 km × 6 km) in
GEE, with either three (red, green, blue; RGB) or four (red, green, blue, and near-infrared starting in
2007; RGBN) spectral bands, with a target of 1 m or smaller pixel size. NAIP is available across the
entire time range of FIA inventory samples that we considered (2005–2017). In order to limit the cases
of non-representative samples, locations without NAIP imagery available within a three year time
window (one year forward, two years back from the date of FIA sampling) were not included in the
training dataset. The image collected closest to the date of FIA field data collection was chosen and
resampled to 1 meter resolution either through mean aggregation, or nearest neighbor resampling.
Only RGB bands were used due to lack of uniform availability of RGBN images across the two states
in our case study region.

2.2.2. Landsat 7

Landsat 7 is one of a series of satellites providing open-source imagery for scientific purposes
through a joint effort by the USGS and NASA [15]. Landsat 7 imagery is collected at 16-day intervals
through the entire period of interest for this study. For training purposes, we produced a 4 × 4-pixel
image at the native 30-m resolution of all but the thermal bands, resampling the panchromatic band
to 30 m from 15 m via mean aggregation, and utilizing the quality assessment (QA) band codes to
mask noisy pixels and all but the lowest confidence cloudy pixels. This was accomplished using only
tier 1, top-of-atmosphere (TOA) reflectance data. As a result of gaps in surface reflectance data and
reduced efficacy of data correction over arid/snow covered regions in GEE, we used TOA to maintain
the highest possible number of continuous temporal samples [50]. We gathered a three year time series
(one year forward, two years back from FIA sampling) and produced a monthly average for each of
the 12 calendar months of reflectance values with only high quality pixels to represent a single year.
This method provided the best chance at capturing the distinct patterns produced by deciduous and
mixed stands, as well as dead stands through an annual cycle.

2.3. Predictor Variables—Ancillary Data

Kane et al. [51] were able to demonstrate that forest structure patterns such as canopy cover
percentage, could be predicted based on water balance and topographic position information.
This follows the intuition that specific forest species with unique structural attributes can be delimited
based on abiotic factors [52]. Therefore, we included ancillary (ANC) climate and terrain data to
provide the CE with additional information for land cover classification and forest structure estimation.

2.3.1. PRISM (Parameter-Elevation Regressions on Independent Slopes Model)

In order to provide long term climate trend information to the CE for each sample, we utilized
PRISM from Oregon State University [53]. PRISM aggregates continuous data from weather
stations across the United States and uses sophisticated interpolation methods to produce gridded
data for the entire United States on multiple time scales. We utilize AN81m, a monthly curated
and quality-controlled dataset which provides dewpoint, vapor pressure deficit, temperature, and
precipitation data at a coarse 2.5 arc-minute (approx. 4 km) scale. This dataset was resampled to a
single 120-m pixel for each sample using the nearest neighbor method, and a mean/standard deviation
across the 30-year period prior to the FIA inventory year associated with each training or test sample.
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2.3.2. USGS NED (National Elevation Dataset)

The National Elevation Dataset (NED) provides gridded elevation at a 1/3 arc-second (approx.
10–15 m) resolution for the entire continental U.S. [54]. NED was produced from multiple individual
datasets as a national aggregation and has been shown to have an RMSE ≈ 1.63 m from truth in vertical
accuracy across the continental U.S. [55]. Terrain features including elevation, slope, and aspect, have
been shown to be correlated with forest structural attributes [56,57]. We use elevation, slope, and
aspect (which we calculate and apply a cosine transform on the fly directly from the NED) in the
training process, represented as a single, 3-band, 120 m mean aggregated pixel for each sample.

2.4. Response Variables

Training Data Targets: FIA Sampling and Database Parameter Usage

Continuous response variables were generated from the forested and non-forested 27,966 FIA
Phase 2 plots inventoried from 2005–2017 within California and Nevada state boundaries. The FIA
program applies a nationally consistent quasi-systematic sampling protocol [58] with a nominal
sampling intensity of approximately one sample location per 2400 ha, to provide a source of information
about the extent, condition, status, and trends of forests across the United States [8,59]. In Phase 2, field
crews visited permanent plots that contain a forested land use (areas that have at least 10% tree canopy
cover, are at least 0.4 ha in size, and at least 36.6 m wide) and collect information on individual trees and
site variables [60]. In each plot, trees were sampled at the subplot (four 24 foot (7.31 m) diameter circles)
or macroplot (58.9 foot (17.95 m)) level in a consistent orientation. Only larger trees are measured
outside the subplots in the case of macroplot measurements by FIA field crews. We considered all
live trees above 1 inch (2.54 cm) in diameter when calculating our response variables. Dry biomass
components for each live tree were calculated via the national standard method (the component
ratio method (CRM)) detailed in the current FIA handbook [60]. We summed the total above ground
components of each tree together to represent the dry biomass of a sample plot, accounting for the
variations of the CRM for woodland species, timber species, and saplings. These values were then
converted to a density value using recorded plot geometry information. Basal area metrics were taken
directly from FIA field measurements within the database. Canopy cover measurements were taken
from the live canopy cover attribute of the database, which can be measured differently (in-situ or
remotely sensed image interpretation) depending on the region and year of survey [61]. Plot-level
QMD was given by the equation:

QMD =

√
∑ dbhi

2

n
(1)

where dbh is the diameter at breast height of each tree, i, for all measured live trees, i = 1, ..., n on the plot.
For the land cover classification task of this study, we classified plots based on an 80% tree count

threshold as ‘conifer’ or ‘deciduous’. If there was not 80% trees of conifer or deciduous type, plots
were labeled as ‘mixed’. A label of ‘dead’ was given to plots where 80% of the trees were recorded as
standing dead. Plots where no trees were present were labeled as ‘none’. It should be noted that these
classification labels are different from FIA definitions, which are land-use labels and not land cover
labels. We additionally utilized FIA non-forested plots (20,660 plots of the 27,966). These plots provide
a valuable baseline for image feature recognition of urban areas, bare land, and water. However, since
these plots are non-forested by definition, these locations are not-visited and have no tree attributes
recorded but may still have tree cover (e.g., urban and residential areas) [61]. Following the methods
of Hogland et al. [35], who visually inspected plot locations against the corresponding reference NAIP
image, we manually inspected images corresponding to these non-visited plots. For locations where
there were clearly no trees visible in the imagery, we labeled them as ‘none’ and attributed them with
AGB, QMD, basal area, and canopy cover values of zero.
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After all manual inspections of plot-to-image correspondence were completed, plots were further
filtered to those containing all four corresponding predictor variable data, leaving n = 9967 samples
(Table 1). The data were then randomly subdivided into training, validation, and test samples. We first
set aside 500 plots for testing (5% of the total data) and then used the remaining data at a 4:1 ratio
of training to validation data for fitting each individual Chimera model (7724 training samples, 1743
withheld validation samples, and 500 test samples). Training, validation, and test samples followed
similar distributions for each response metric, and across all k-fold cross-validation subsets as discussed
in the Model Ensembling section below (Figure A1).

Table 1. Summary of forest inventory and analysis (FIA) plot data: (a) distribution of FIA plot forest
type classes for all plots used in training/validation and testing; (b) bulk statistics of FIA plot forest
structure metrics (above ground biomass (AGB), quadratic mean diameter (QMD), basal area, and
canopy cover) for all forested plots used in training (n = 3237) and testing (n = 170).

a

Class Training/Validation Testing

n (%) n (%)

None 6226 0.66 330 0.66
Conifer 1686 0.18 92 0.18

Deciduous 407 0.04 15 0.03
Mixed 1105 0.12 62 0.12
Dead 43 << 1 1 << 1

b

Metric Training/Validation Testing

Mean SD Min Median Max Mean SD Min Median Max

AGB (Mg/ha) 99.62 139.04 0.1 41.0 3240.2 103.39 134.48 0.1 40.8 907.4
QMD (in) 15.15 7.20 1.0 13.2 87.2 15.61 7.49 5.0 13.4 42.1

Basal Area (ft2/ac) 107.69 88.14 0.6 88.1 1201.6 107.84 85.48 1.1 86.6 435.2
Canopy Cover (%) 40.56 25.76 0.5 35.0 99.0 40.21 24.71 3.0 35.1 99.0

2.5. Chimera RCNN Architecture

We constructed a deep learning model architecture called Chimera, for estimating forest structure
using the Keras (v2.1.3) package [62] for building TensorFlow (v1.3.0) CNNs in Python. We implemented
a multi-task learning (MTL) neural network architecture that merges climate, terrain, Landsat, and
NAIP imagery datasets as predictors to perform two tasks: (1) classification of land cover type (‘none’
(non-forested), ‘deciduous’, ‘conifer’, ‘mixed’, ‘dead’) and (2) regression of four continuous forest
metrics (AGB, quadratic mean diameter (QMD), basal area, and canopy cover) simultaneously [44]
(Figure 3). Multi-task learning is a technique that has been demonstrated to improve accuracy by
allowing convolutions to fit parameters more efficiently through understanding “easier” tasks [43,63,64].
This follows the intuition from another popular model called “you only look once” (YOLO) [65], that
performs both object detection and classification simultaneously. In the YOLO architecture, a single
trained CNN takes an image as an input and then performs discrete object identification (classification
task) and draws a box around the object, thus performing an estimate of the box width, height, and center
coordinates (regression tasks). Our architecture, similarly performs two tasks, but also allows the neural
network to learn multiple differing input feature parameters simultaneously. To perform the classification
and regression tasks, Chimera minimizes two loss functions in a single model; a cross-entropy loss
function (H):

H(y, ŷ) = −∑
i

yilog(ŷi), (2)
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where yi is the ground truth label of ith training sample instance and ŷi is the ith model prediction,
and the L2 (mean squared error; MSE) loss function:

MSE(y, ŷ) =
1
n

n

∑
i
(ŷi − yi)

2. (3)

Chimera’s architecture utilized a five block DenseNet structure to serve as the shared layer that
will identify features within a three channel NAIP image. The DenseNet architecture [66] allows
improved information flow between sequential convolutional composite layers Fj composed of a batch
normalization, rectified linear units (ReLU), convolution, dropout, and pooling. We denoted the output
of the j-th layer as xj by direct concatenation of the feature maps produced from proceeding layers:

xj = Fj([x0, xj, . . . , x(j−1))], (4)

where [x0, xj, . . . , x(j−1)] refers to the concatenation of the j previous layer outputs. This improved
information flow additionally allows for higher performance, reduced parameter space, and faster model
fitting compared to other well known architectures (e.g., ResNet, GoogLeNet, AlexNet) [32,37,67].

Figure 3. The recurrent convolutional neural network architecture used by the Chimera multi-task
network for forest structure regression and forest type classification. Chimera takes in a single National
Agriculture Imagery Program (NAIP) aerial image, a three year time-series of Landsat aggregated to
the month, and ancillary terrain/climate measurements of varying resolutions and combines features
from each input for estimation.
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A three layer convolutional long short-term memory (LSTM) block was applied to time sequenced
Landsat scenes to summarize temporal changes that would be conducive to identifying deciduous,
conifer, and mixed forest stands [38,68,69]. The output of the LSTM layer was concatenated to the
dense layer of the DenseNet for classification.

We concatenated the ancillary climate and DEM data to the output of the final DenseNet layer and
LSTM layer. We then forked the concatenated layer in two for each task and run each fork through four
fully connected layers with five outputs for the classification task and four outputs for the regression
task. This is an example of a hard parameter sharing architecture, in which the same final concatenated
layer is used for both tasks [44]. This allows the classification loss to influence regression parameters,
and the regression loss to influence the classification parameters. For example, where classification was
‘none’, forest structure metrics were low to zero, indicating a strong relationship between the two tasks.

NAIP and Landsat image samples were augmented randomly using image rotation and mirroring
during model training to increase robustness of the RCNN and to allow varying forest image feature
geometries to represent the same forest structure metric values across different training epochs.
Furthermore, to compensate for training sample class count imbalance, we applied the Eigen and
Fergus [70] class weighting method to adjust the final cross-entropy loss layer.

Each individual Chimera RCNN was trained for 90 epochs at an 80 sample batch size using a
stepped learning rate Adam optimizer [71] (learning rate stepped by a factor of 0.1 at every 30 epochs)
to increase speed of model convergence during gradient descent. Average training time was 1h30m on
a Microsoft Azure NC6 instance using a Intel (R) Xeon (R) E5-2690v3@2.80GHz CPU with 56 GB of
RAM and a NVIDIA Tesla K80 GPU with 24 GB of GDDR5 memory.

Additionally, to understand if contributions of each input dataset improve performance, we fit
seven different independent models with the complete training dataset, using all possible combinations
of input data with the Chimera architecture (ANC only; NAIP only; NAIP and ANC; Landsat only;
Landsat and ANC; NAIP and Landsat; all inputs).

2.6. Chimera Comparisons with RF and SVM

Using the same training and test data sets, we built inputs for random forest and support vector
machine models with the Scikit-learn package implemented in Python to compare results [72]. Data
were subsetted to accomplish each regression task (four models), and the classification task separately
(one model), resulting in five models for each algorithm. Two forms of data aggregation were tested:
one used a single Landsat pixel time series of aggregated arrays resulting in 84 features, while the
other used the same full 4 × 4 Landsat image time series as the Chimera ensemble, resulting in
1344 features. In both cases, textural extraction of NAIP was performed identically: one layer of
4 × 4 standard deviation gray level (SDGL) and one layer of 4 × 4 mean-downsampled images were
concatenated, resulting in 96 features. Climate and DEM inputs were kept in the same shape and
all data were normalized through the same process as the Chimera Ensemble. The final shapes of
the resultant flattened vectors were 197 and 1457 features. The RF models were parameterized with
nestimators = 150 and the SVM models were parameterized with c = 250, γ = 0.5 after employing a
grid search methodology and finding the best output RMSE values across all tasks.

2.7. Model Ensembling

We used a k-fold cross-validation methodology to divide the data into a 4:1 ratio training versus
validation samples. Five separate Chimera models (k = 5) were fit with each fold of the training
data. We performed diagnostics on each model to ensure all had converged on their loss functions
and accuracy metrics (Figure 4). A super learner [45] approach was used to ensemble the five models
weighted by the design matrix A in the form:

Ŷensemble = AŶstack, (5)
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where Ŷstack is a matrix of stacked column vectors Ŷk, for each fitted model k. We solved for A using a
multiple linear regression as the meta-learning algorithm and applied these final weights to combine
models for prediction. The stacking methodology has been demonstrated to increase prediction
accuracy metrics over a single model alone, or a simple unweighted averaging of models [73].

Figure 4. Diagram of the k-fold cross validation and model ensemble stacking for model diagnostics
and prediction. All models utilized a total of 9967 samples divided into: 7724 training samples
and 1743 k-fold withheld validation samples, both unique to each model. We also generated 500
independent test samples for final evaluation. Model ensembling was performed using a super learner
model stacking methodology [45].

3. Results

3.1. Model Diagnostics and Input Experiments

Both the batch-level classification and regression loss functions converged for training and
validation data for all k-folds within 60 epochs for a total of 1,353,593 parameters. Low differences in
loss values between training and validation suggested that no individual Chimera model was overfit
(Figure 5). Experiments of differing Chimera model input combinations (Table 2) demonstrated that
all data types on their own (ANC only, NAIP only, Landsat only), did not perform as well as models
with two input types. NAIP + ANC data outperformed Landsat models in classification (+0.01 overall
F1-score) and similarly to Landsat + ANC in regression performance (R2 = 0.76). The full model case
(NAIP + Landsat + ANC) had the best overall performance (overall classification F1-score = 0.90;
overall regression R2 = 0.81, normalized RMSE = 0.076) for the combined task of classification and
regression simultaneously compared to each input combination considered separately, however the
imagery-only model (NAIP + Landsat) performed slightly better in land use cover plot classification
(overall classification F1-score = 0.92; overall regression R2 = 0.78, normalized RMSE = 0.080).
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Figure 5. A single Chimera model fit history for both classification and regression tasks using a
cross-entropy loss function (classification) and a L2 loss function (regression). All models had training
losses approximately converge by the 60th epoch.

Table 2. Experiment results of varying combinations of input training data types (ancillary (ANC)
only; National Agriculture Imagery Program (NAIP) only; NAIP + ANC; Landsat (LS) only; LS + ANC;
NAIP + LS; NAIP + LS + ANC (FULL)) for individual Chimera models. Full composite of data inputs
results in best overall performance on a single Chimera model for both classification and regression
simultaneously. All statistics reported here are for the training-withheld test set of 500 plots. Best scores
(and best score ties) are denoted in bold.

Classification Metric (F1-Score) ANC NAIP NAIP + ANC LS LS + ANC NAIP + LS FULL

None 0.83 0.99 0.99 0.97 0.97 0.99 0.98
Conifer 0.57 0.80 0.82 0.78 0.81 0.85 0.81
Deciduous 0.00 0.46 0.39 0.27 0.39 0.65 0.60
Mixed 0.27 0.59 0.61 0.56 0.63 0.74 0.66
Dead 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Overall 0.68 0.89 0.89 0.86 0.88 0.92 0.90

Regression Metric (R2) ANC NAIP NAIP + ANC LS LS + ANC NAIP + LS FULL

AGB 0.00 0.70 0.70 0.74 0.73 0.75 0.78
QMD 0.12 0.78 0.76 0.68 0.67 0.78 0.79
Basal Area 0.04 0.75 0.76 0.78 0.79 0.78 0.81
Canopy Cover 0.07 0.82 0.82 0.83 0.83 0.84 0.85

Overall (mean R2) 0.06 0.76 0.76 0.76 0.75 0.78 0.81

Regression Metric (RMSE) ANC NAIP NAIP + ANC LS LS + ANC NAIP + LS FULL

AGB (Mg/ha) 92.62 50.67 50.45 46.95 48.05 46.45 43.34
QMD (in) 8.07 3.99 4.24 4.87 4.90 4.04 3.90
Basal Area (ft2/ac) 69.90 35.86 34.65 33.16 32.72 33.42 30.91
Canopy Cover (%) 23.05 10.04 9.99 9.85 9.99 9.47 9.25

3.1.1. Classification Task Diagnostics

We used accuracy metrics of precision, recall, and F1-scores to assess Chimera’s classification
abilities. Precision refers to number of true positives divided by total true and false positives, while
recall refers to true positives divided by the sum of true positives and false negatives. The F1-Score
is a combination of the precision and recall, defined by, (2 ∗ precision ∗ recall)/(precision + recall).
Classification diagnostics on the test set reported an overall average precision, recall, and F1-score of
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0.92, 0.92, and 0.92, respectively (Table 3) (Figure 6). Class-wise F1-scores were high for ‘none’ (0.99)
and ‘conifer’ (0.86) classes. This indicated that the ensemble model was able to distinguish between
forested and non-forested plots. The CE had difficulty accurately distinguishing the ‘deciduous’ class
and ‘mixed’ class, with moderate F1-scores of 0.6 and 0.74 respectively. This difficulty emerged as a
result of class label imbalance in the training data. The ‘dead’ class samples were insufficiently assessed
due to the low sample number within the test samples (n = 1). Due to this limited number of dead
samples in the test set, we assessed each individual k-fold Chimera model in CE for their predictive
ability on their respective k-fold validation subset. F1-scores for these k-fold validations were as
follows: (k1 = 0.222, k2 = 0.182, k3 = 0.0, k4 = 0.0, k5 = 0.133), demonstrating a weak predictive
ability for the dead class. Comparisons to SVM and RF reported higher levels of performance from the
CE in all classes (except ‘dead’ class), with the largest difference occurring with the CE versus the SVM
in classifying the ‘deciduous’ (F1-score difference of 0.26) and ‘mixed classes’ (F1-score difference of
0.13) (Table 3).

Table 3. Classification accuracy metrics for the best individual Chimera model (BIM), Chimera
ensemble (CE), random forest (RF), and support vector machine (SVM) used in this study to predict
forest type from FIA plot data. All statistics reported here are for the training-withheld test set of
500 plots. Precision refers to number of true positives divided by total true and false positives, while
Recall refers to true positives divided by the sum of true positives and false negatives. The F1-Score is
two times the precision times the recall, divided by the sum of precision and recall. Support refers to
the number of samples for each class. Best scores (and best score ties) are denoted in bold.

Class Precision Recall F1-Score Support

CE BIM SVM RF CE BIM SVM RF CE BIM SVM RF

None 0.99 0.98 0.96 0.97 0.99 0.99 0.97 0.99 0.99 0.99 0.96 0.98 330
Conifer 0.81 0.82 0.73 0.79 0.91 0.90 0.76 0.87 0.86 0.86 0.74 0.83 92

Deciduous 0.60 0.54 0.36 0.54 0.60 0.47 0.33 0.40 0.60 0.50 0.34 0.46 15
Mixed 0.81 0.81 0.63 0.78 0.68 0.68 0.58 0.65 0.74 0.74 0.61 0.71 62
Dead 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1

(a) (b)
Figure 6. Chimera ensemble classification task confusion matrix after 90 epochs of training,
(a) normalized accuracy; (b) absolute accuracy counts. Low accuracy rate for ‘dead’ class relates
to low number of total available training/validation samples. Increased ‘dead’ class samples could
adjust for this problem.

3.1.2. Regression Task Diagnostics

The CE presented a strong ability to predict forest structure metrics, with all metrics reporting R2’s
above 0.8 on the independent test data (n = 500) (Figure 7). Scores for the single best individual model
(BIM) and ensemble were similar, but with the ensemble consistently outperforming the BIM at all forest
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structural metrics. Canopy cover was the best performing metric (R2 = 0.89, RMSE = 8.01 percent),
followed by basal area (R2 = 0.87, RMSE = 25.88 ft2/ac), AGB (R2 = 0.84, RMSE = 37.28 Mg/ha), and
finally QMD being the lowest (R2 = 0.81, RMSE = 3.74 inches) (Table 4). This was expected, as elements
of forest structure such as QMD underneath the canopy are hidden and can be difficult to estimate
based on optically sensed spatial feature detection alone, whereas canopy cover features can often be
recognized based on imagery alone.

Similarly, in spatially explicit prediction, plots demonstrated the ability for the model to be able
to distinguish dense forest canopy cover and provided representative estimates of large and small
diameter tree stands reflected with low QMD and basal area estimates (Figures 8 and 9)

Figure 7. Regression diagnostics, showing true (x-axis) versus estimated (y-axis) for each regression
variable on the n = 500 independent test dataset. The best performing individual model (top) and
ensembled model (bottom) are shown.

Table 4. Regression accuracy metrics for the BIM and CE used in this study to predict forest structure
metrics (above ground biomass (AGB), quadratic mean diameter (QMD), basal area, and canopy cover)
from FIA plot data, compared with RF and SVM methods. All statistics reported here are for the
training-withheld test set of 500 plots. Bold text highlights the best performing model in each category.

Metric (R2) CE BIM RF SVM

AGB 0.84 0.83 0.76 0.68
QMD 0.81 0.80 0.76 0.69

Basal Area 0.87 0.85 0.78 0.79
Canopy Cover 0.89 0.88 0.84 0.84

Metric (RMSE) CE BIM RF SVM

AGB (Mg/ha) 37.28 38.19 45.71 52.11
QMD (in) 3.74 3.86 4.19 4.81

Basal Area (ft2/ac) 25.88 27.43 33.16 32.73
Canopy Cover (%) 8.01 8.10 9.64 9.68
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(a) NAIP.

(b) AGB only.

(c) AGB overlayed on NAIP.

Figure 8. Example of AGB overlay plot on input NAIP aerial imagery. (a) NAIP aerial imagery alone;
(b) AGB estimate; (c) AGB estimate overlaid on NAIP. These images aid in verification of the Chimera
ensemble’s ability to interpret image textures similarly to humans in distinguishing high and low
density forests.
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(a) Basal area.

(b) Quadratic mean diameter.

(c) Canopy cover.

Figure 9. Spatially explicit forest structure metric prediction plots overlain on NAIP (a) basal area;
(b) quadratic mean diameter (QMD); (c) canopy cover, in the Lake Tahoe region. Chimera ensemble
predictions of forest structure metrics are presented at 30-m resolution and can distinguish heterogeneous
forested and non-forested cover.
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3.2. Model Comparison Experiment

We explored two versions of SVM and RF models with a single-pixel seven-channel representation
of Landsat data, and a 4 pixel × 4 pixel × seven-channel input. We found the single pixel variation
resulted in the highest accuracy. RF outperformed SVM in all response variable estimates except
basal area. The largest improvements by the Chimera ensemble were observed for AGB and basal
area with a 0.08 increase in R2’s respectively when compared to RF AGB and SVM basal area. Both
the BIM k-fold and CE were superior to SVM and RF in all classification tasks except dead (Table 3).
Highest classification difference was between the ‘deciduous’ type, with CE having a 0.14 increase in
F-score compared to RF. CE also outperformed RF and SVM in regression in all forest structure metrics
with the biggest improvements in basal area and AGB (Table 4). Post-hoc comparisons of saturation
levels for estimated AGB values were modeled using a saturating exponential function [74,75] defined
by, γ(h) = c0 + c1(1 − e

−3h
a ), to identify the data saturation asymptote (c1) for AGB prediction.

This comparison reported Chimera reaching AGB data saturation much later (416.7 Mg/ha) than RF
(386.3 Mg/ha) and SVM (245.0 Mg/ha), which agrees with its ability to perform better at estimating
AGB (Figure A2).

4. Discussion

This research describes an effort to measure the ability of a novel deep learning approach for
estimation of forest structure and classification simultaneously based on a fusion of multi-resolution
and temporal data. There has been extensive research on estimating forest structure given the
development of new modeling methodologies and the availability of free remote sensing data [6,7,76].
Implementations include utilization of various combinations of models and datasets to address forest
structure estimates and classification [35,59,77–80]. Blackard et al. [11], performed a national scale
effort to model AGB and forest classification through a tree-based algorithm approach with impressive
results for AGB estimation utilizing three eight-day composited MODIS images, classified land cover
information, and climate/topographic data. Three issues were cited in the study: (1) over-prediction
of areas of small AGB and under-prediction of areas of large AGB due to reflectance saturation, (2) not
capturing the full range in variability due to pixel size mismatch (250-m MODIS derived data) to FIA
plot size, and (3) error in forest/non-forest classification due to FIA plot-based estimates pertaining to
forest land use, which does not necessarily have trees on them, while satellite image-based estimates
portraying forest land cover. Wilson et al. [78] made another step forward in this effort utilizing a
phenological gradient nearest neighbor approach which integrating MODIS imagery across multiple
time intervals, rather than a single aggregated time-step, and ancillary environmental data that includes
topography and climate, to initially estimate forest basal area at the species level and later include
AGB [8]. Our research examines a method to further include high resolution NAIP imagery in the
suite of predictor variables, and utilize a unique RCNN architecture we call Chimera.

Previous work in utilizing more moderate spatial resolutions (30-m) remote sensing for estimating
AGB had found that applications of machine learning methodologies more accurately estimated AGB
than classical statistical methods, with an R2 ranging from 0.54–0.78 [81–83]. Zolkos et al. [6] states that,
although there are no explicit required accuracy levels for AGB estimation, a map for global AGB should
not exceed errors of 50 Mg/ha at 1-ha resolution. This de facto standard has led to an increased interest
in more advanced sensors to improve AGB estimation. For example, Zhang et al. [84] utilized Landsat
and the Geoscience Laser Altimeter System (GLAS) space-borne platform in a large-scale modeling effort
to produce gridded leaf-area index maps and canopy height maps of California, which derived AGB at a
30-m resolution across the entire state. Modeled uncertainties via their Monte Carlo methodology were
in the range of 50–150 Mg/ha across the entire state, with denser forest in the Sierra Nevada Mountains
closer to 100–150 Mg/ha. Chen et al. [85] was able to report within-sample statistics of R2 = 0.83 and
RMSE = 72.2 Mg/ha using a model based solely on aerial LiDAR for the Lake Tahoe region. This effort
represents one of the best models for AGB estimation in the region. The Chimera ensemble displays the



Remote Sens. 2019, 11, 768 17 of 29

ability to achieve similar performance in a comparable forested type landscape with high coefficient of
determination (R2) values (above 0.8) and low RMSE for all forest structure metrics.

As our first step at measuring the RCNN performance at the predictor level, we ran experiments
comparing various permutations which included different combinations of the input NAIP, Landsat,
and ANC data. We found that combining the full suite of data performed better overall than any of the
input datatypes in isolation for forest structure estimation, specifically with the highest performance
increases in AGB and basal area accuracy. The inclusion of high resolution information increased the
data saturation level for estimates of AGB, where estimates reached saturation at 416.7 Mg/ha, rather
than 354.0 Mg/ha, when only including the Landsat time-series and ancillary variables (Figure A2).
The combination of NAIP and Landsat are found to have the best performance at the classification
task overall versus Landsat alone, with an overall F1-score improvement of 0.08, which suggests
that inclusion of high resolution imagery aids in AGB estimation and identification of forested and
non-forested plots due to the additional textural information. This is in agreement with previous
studies which demonstrated that including high resolution imagery increases a machine learning
model’s ability to distinguish forest composition types [86,87].

Our experiments with RF and SVM models using the same training and testing datasets further
demonstrated how the RCNN method of spatial feature detection can improve forest structure estimation
and classification. Due to the non-convolutional characteristics of RF and SVM, even if textural
summarizing functions such as SDGL were included in the predictor datasets, the RCNN model
was still able to achieve higher accuracy in both classification and regression tasks. The convolutional
nature is important in the regression task, where structural features such as the size of a large or small
canopy can be relevant for estimates of basal area and QMD. This characteristic contributed to the
CE’s increased performance versus RF, with an overall 17% reduction in RMSE for all forest structure
metrics (Table 4). Additionally, because the Chimera model utilizes a recurrent layer in its structure for
Landsat images, features that are identified in the twelve month series are seen as a set of orderly and
continuing sequences, rather than a one-dimensional vector of independent values [88]. This allowed
substantial improvement in distinguishing of the land use class of ‘deciduous’, with CE improving the
F1-score by 0.26 and 0.14 compared to SVM and RF, respectively. This indicates that the Chimera model,
with its ability to automatically identify relevant image features and incorporate information regarding
spatial-temporal relationships between pixels in prediction, can efficiently and substantially improve
forest structure estimation using the same input datasets.

Model ensembling/stacking was found to be an improvement over a single best fit Chimera
model. Although only a modest improvement was found versus the best individual k-fold model with
an increase of 0.025 in overall F1-score for classification, and regression improvements of overall R2 of
0.0125, and reduction of overall RMSE by 3.1%. These findings were consistent with the literature that
stacking multiple models based on a linear regression weighting, can reduce individual model biases
and increase the robustness of prediction [89]. These biases could include image distortion, object
occlusion, and inconsistent lighting being abundant in NAIP training data due to off-nadir image
acquisition, and Landsat seven commonly containing gaps due to scanline errors and poor quality
pixels. By fitting multiple models and predicting in an ensemble, we show that the Chimera ensemble
is able to qualitatively estimate land cover type and forest structure well (Figures A3 and A5).

Caveats Associated with the Training Data

Although 27,966 FIA plots were available for the CA-NV study area, we removed a large
proportion (>50%) of the samples after manual visual inspection, in which non-forest land-use
classification defined by FIA did not correspond to the associated land cover in the NAIP image.
Though time-consuming and laborious, this exercise was essential to prevent the model from learning
incorrect image texture representations of the forest classes and structural attributes measured in
situ [21]. The performance of Chimera can mainly be attributed to its access to those 9967 quality
data plots. CNNs are the most data-hungry method of machine learning, primarily due to the sheer
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number of parameters needed to fit the model, which in turn is based on the volume of training
data. We also note that given the differences in FIA protocols over time and regions [61], some forest
structure response attributes such as canopy cover were measured subject to variability (in situ versus
remote sensed image interpretation), which could have downstream effects on the performance of
CE (Figure A5). In terms of portability and robustness, it should be mentioned that our tests of CE
are exclusively in the CA-NV region. Although a variety of US Western ecotypes, from temperate
forests to semi-arid woodlands are represented in our analysis, our approach would not be applicable
to make predictions of forest class or structure in rainforest ecotypes nor the hardwood forests of the
Eastern US, unless CE were retrained on data from those specific forest types.

5. Conclusions and Future Research

We demonstrate the performance of a novel multi-task, multi-input recurrent convolutional neural
network called the Chimera model for forest land use classification and forest structure estimation.
We summarized the results of three major objectives as follows: (1) performance of the Chimera model
was the highest with the full input dataset that included NAIP, Landsat time-series, and ancillary
climate and topography data; (2) the Chimera model outperforms SVM and RF models with the
same input data for all classification and regression tasks; and (3) ensembling of multiple Chimera
models modestly increased predictive performance compared to a single best fit model alone. These
results represent, to our knowledge, the first application of a RCNN with multi-input for improving
estimations of forest structure.

The ability of the Chimera ensemble to distinguish between forested and non-forested land
cover images within California and Nevada presents a new approach for generating a time-series of
change detection for both afforestation and deforestation based on high-resolution imagery. Since our
model requires only freely accessible data, we can feed new acquisitions of NAIP and Landsat scenes
through the existing model to generate new predictions. This potential for continuous prediction
is progress towards work similar to Wilson et al. [8] who developed a model for imputing forest
carbon stock at a nationally continuous scale. Given access to the national USFS FIA dataset, widely
considered the “gold standard” of field collected forest metric samples within the entire United States,
one would have a large enough sample size to parameterize multiple robust RCNN models focused
on a forest of interest. A future iteration of the Chimera ensemble trained on a new subset of USFS FIA
encompassing a region outside of California and Nevada could provide state-of-the-art estimates of
forest structure in many completely different ecotypes. Additionally, with integration of advanced
satellite technology including the GEDI and NISAR missions [90,91], more opportunities to combine
LiDAR or radar information with existing NAIP and Landsat data could generate still better estimates
of forest structure.

Finally, we see this study as just one indication of the promising application of deep learning
architectures to ecology and remote sensing. Future work could include multi-task learning applied to
land-cover and land-use mapping problems such as monitoring of woody encroachment on wetlands,
or measuring forest loss due to wildfire or disease outbreaks. In addition to forest and stand structural
characteristics, future research could inform the identification and delineation of key habitat attributes
for wildlife [92]. Wall-to-wall forest structural maps can also be used as inputs for fire modeling
applications that depend on canopy cover, canopy height, canopy crown bulk density, and crown
base height to determine fire behavior [93]. Integration of our model in a “near real-time” wildfire
probability model could provide estimates of fire risk and serve as a tool for prioritizing locations for
fire prevention treatments [94]. Predictive modeling applications (e.g., coastline vegetation, wetlands,
grasslands, or shrublands) often require both classification (e.g., presence/absence, type) and regression
(e.g., abundance/cover conditional on presence).

We have demonstrated that the Chimera architecture is capable of fusing various types of data
(sensor, climate, and geophysical data, both time-varying and fixed) that are now commonplace in
many ecological applications, and using the information they provide to improve predictive ability.
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By taking advantage of distributed cloud computing, future development of a continuously integrated
pipeline could extend this model towards automatically updated landscape or global forest metric
estimates. RCNN architectures similar to Chimera present an opportunity to combine disparate data
types and move towards global-to-local level ecosystem monitoring.
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Abbreviations

The following abbreviations are used in this manuscript:

AGB Above ground biomass
ANC Ancillary climate and terrain data
BIM Best individual chimera model
CA California
CE Chimera ensemble
CNN Convolutional neural network
DEM Digital elevation model
GEDI Global Ecosystem Dynamics Investigation LiDAR
GEE Google Earth Engine
GLAS Geoscience laser altimeter system
GLCM Gray level co-occurrence matrix
FIA Forest inventory and analysis
LS Landsat
LSTM Long-short term memory cell
MODIS Moderate resolution imaging spectroradiometer
MTL Multi-task learning
NASA National Aeronautics and Space Administration
NISAR NASA-ISRO Synthetic Aperture Radar
NAIP National Agriculture Inventory Program
NED National elevation dataset
NV Nevada
PRISM Parameter-elevation regressions on independent slopes model
QA Quality assessment
QMD Quadratic mean diameter
RCNN Recurrent convolutional neural network
ReLU Rectified linear units
RF Random forest
RGB Red-green-blue
RMSE Root mean squared error
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SD Standard deviation
SDGL Standard deviation of gray levels
SVM Support vector machine
TOA Top Of atmosphere
USDA United States Department of Agriculture
USGS United States Geological Survey
YOLO You only look once

Appendix A. Additional Figures

Figure A1. Distribution plots of training and validation k-fold subsets, and testing data demonstrate
similar (a) percentages of each response variable type of land cover class and (b) densities plots of each
forest structure metric.
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Figure A2. Plots of predicted AGB versus measured AGB within test set comparison amongst different
input combinations of the Chimera model and SVM and RF. The NAIP + ANC and full NAIP + Landsat
+ ANC displayed the highest predictive values prior to reaching saturation.

(a)

Figure A3. Cont.
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(b)
Figure A3. Visual representations of a sample (not all inputs presented here) used for training the
Chimera ensemble. White outlined area represents plot regions for FIA field measurement and total
image represents 120-m × 120-m area at 1-m resolution. Fourteen total climate parameters, three terrain
characteristics, and all Landsat bands except thermal bands were used for training, as well as RGB NAIP.
Landsat images represent 4 × 4 pixels at 30-m resolution. In addition to AGB of live standing trees >= 1
inch (2.54 cm) in diameter, other prediction values generated from FIA samples included QMD, percent
canopy cover, basal area, and forest plot classification. Examples of ‘conifer’ class plots, demonstrate the
ability to identify textural features of both (a) heavy timber and (b) woodland conifer forests.

(a)

Figure A4. Cont.
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(b)
Figure A4. Examples of ‘none’ class (non-forested) plots. Chimera ensemble can distinguish features
from both (a) roads/agriculture and (b) urban featured areas from forested areas.

(a)

Figure A5. Cont.
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(b)
Figure A5. Example of ‘mixed’ class plots, where model identifies semi-green saturation from the
Landsat temporal signal. (a) Case of likely-accurate underestimation of AGB and canopy cover due
to sparseness of vegetation in unsampled region of image. (b) Challenging case of over estimation
for forest canopy cover in prediction, which are larger than in situ plot measurement from heavily
shadowed NAIP visual signal.

(a)

Figure A6. Cont.
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(b)
Figure A6. Example of challenging ‘deciduous’ and ‘dead’ stands. (a) ‘deciduous’ example was half
populated with trees within the NAIP image sample. (b) ‘dead’ case reveals a mixed Landsat signal,
leading to a misclassification of ‘deciduous’ with low prediction probability.
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