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A B S T R A C T   

Several recent studies have documented how fire severity affects the density and spatial patterns of tree re-
generation in western North American ponderosa pine forests. However, less is known about the effects of fire 
severity on fine-scale tree regeneration niche attributes such as understory plant composition and cover, surface 
fuel abundance, and soil properties, or how these attributes in turn affect regenerating ponderosa pine growth. 
Using 1-m2 plots centered on 360 ponderosa pine seedlings that regenerated naturally after the Pumpkin Fire in 
2000 in Arizona, we quantified regeneration niche attributes 13 years post-fire and measured their associations 
with seedling growth 11–16 years post-fire. Plots were established in a) unburned, b) moderate-severity, and two 
types of high-severity (100% tree mortality) burns, either c) adjacent to residual live forest edges (high-severity 
edge plots), or d) > 200 m from any residual live trees (high-severity interior plots). We found that all burned 
plots had greater understory plant species richness, percent cover of forbs, exotic plants and coarse wood, as well 
as higher soil pH, sand and gravel content, and lower soil clay content compared to unburned plots. High- 
severity burn plots had the greatest total understory plant and shrub cover, the most herbaceous fine fuel bio-
mass, and tended to have the highest soil nitrogen content compared to other burn severity classes. Ponderosa 
pine growth (i.e., stem diameter at root collar (DRC) and length of terminal leader) was lowest in the unburned 
compared to burned plots, and ponderosa pine terminal leader growth was consistently greater in the high- 
severity edge plots compared to other severities. Finally, niche characteristics such as overstory tree canopy 
cover (−), soil phosphate (+), and cover of coarse wood (+), forbs (+), and the native grasses, mountain 
muhly (+) and squirreltail (−), were important explanatory variables of ponderosa pine growth. Exotic plant 
cover did not have a negative association with ponderosa pine growth. These results suggest that if ponderosa 
pine seeds can disperse and germinate, and if seedlings can survive the first few critical years after germination, 
then low overstory canopy cover and abundant forbs or coarse wood may be associated with increased growth 
rates. Alternatively, forbs may be responding to the same site benefits as the seedling; and abundant forbs, coarse 
wood, and fine fuels might also put seedlings at increased risk of mortality from subsequent fire, at least until 
they are taller and more fire resistant.   

1. Introduction 

Contemporary wildfires in western North American ponderosa pine 
(Pinus ponderosa Lawson & C. Lawson) forests have increased in size and 
severity, leaving a mosaic of burn severities including larger, con-
tiguous patches of high-severity fire (100% tree mortality) (Dillon et al., 
2011; Singleton et al., 2019). Ponderosa pine is a dominant forest type 
in the semi-arid southwestern (SW) US. The historical fire regime in SW 

ponderosa pine forests mainly consisted of frequent low- to moderate- 
severity fire, which left heterogeneous spatial patterns of surviving 
trees, in contrast to the large, high-severity burn patches created by 
recent severe fires (Swetnam and Baisan, 2003; Rodman et al., 2016; 
Singleton et al., 2019). Ponderosa pine readily regenerates in small 
openings created by low-, moderate-, and even high-severity fire 
(Malone et al., 2018; Coop et al., 2019). However, ponderosa pine is 
poorly adapted to regenerate in large patches of high-severity fire 
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because it does not re-sprout or have serotinous cones, nor does it 
maintain long-lived soil seedbanks (Oliver and Ryker, 1990; He et al., 
2012). Studies conducted 10+ years after high severity fires found 
reduced ponderosa pine regeneration densities at distances farther 
(50–200 m) from seed sources (Chambers et al., 2016; Kemp et al., 
2016; Owen et al., 2017; Ziegler et al., 2017; Rodman et al., 2020; 
reviewed in Korb et al., 2019). Although seedling densities were low, 
some sparse and spatially heterogeneous, natural regeneration occurred 
after high-severity fire, even > 200 m from residual seed sources 
(Owen et al., 2017; Ziegler et al., 2017). To conserve and protect 
naturally recovering ponderosa pines, and to improve restoration suc-
cess, it is important to understand post-fire regeneration niches and 
how they influence seedling growth and survival. 

The “regeneration niche” characterizes the fine-scale environmental 
conditions that are suitable for regeneration processes such as seed 
germination, seedling establishment and growth (Grubb, 1977; Clark 
et al., 1999). Ponderosa pine requires several conditions to coincide for 
successful germination and establishment. These conditions include a 
favorable climate, a well-prepared seedbed, lack of competing vegeta-
tion, sufficient soil moisture, as well as protection from fire, browsing 
animals or other pests (Pearson, 1950; Schubert, 1974; Savage et al., 
1996; Feddema et al., 2013; Iniguez et al., 2016; Rodman et al., 2020). 
If seedlings survive the high-mortality stage in the first few years after 
germination, niche components including surrounding plant commu-
nity characteristics, soil properties, and litter conditions may continue 
to influence growth of established seedlings (Pearson, 1950; Stein and 
Kimberling, 2003; reviewed in Dey et al., 2019). Both seedling height 
and size could be important factors in determining the survival of future 
disturbances, such as subsequent fires (seedling height) or frost-heaving 
(greater rooting depth), but there may be tradeoffs between growth 
rates and survival following drought events (Pearson, 1950; Bailey and 
Covington, 2002; Bigler and Veblen, 2009; Lloret et al., 2011). 

Previous research demonstrates variable effects of fire severity on 
understory plant communities, soils, and fuels, but it is unclear how 
these effects translate to ponderosa pine niche characteristics or to 
seedling growth. Fires create canopy gaps that favor exotic (e.g. Alba 
et al., 2015) or native (e.g. Abella and Fornwalt, 2015) understory 
plants that could individually or collectively compete with regenerating 
pines. Alternatively, understory plants may positively influence growth 
by acting as nurse objects for regenerating pines, especially under 
stressful site conditions (Fajardo et al., 2006; Sthultz et al., 2007). 
Conditions that favor understory plant abundance may also favor 
ponderosa pine establishment and higher growth rates. Low- or mod-
erate-severity fires rarely induce drastic or long-term soil changes (re-
viewed in Certini 2005). However, severe fires can induce short-term 
increases in available soil nutrients (Covington et al., 1991; Covington 
and Sackett, 1992), followed by either long-term reductions (Smith 
et al., 2017; Ross et al., 2012) or increases in nutrients (Johnson and 
Curtis, 2001), depending on the amount of combustion, mineralization, 
and regeneration. Additionally, severe fire can alter soil structure and 
increase soil temperature and pH, although effects are often short-lived 
(Ulery et al., 1993; Robichaud, 2000; Huffman et al., 2001; Neary et al., 
2012). In addition, fires create canopy openings that enhance unders-
tory biomass production, and moderate to high-severity fires increase 
coarse woody fuel loads which may provide microsites favoring pine 
growth, but may eventually put seedlings at risk of burning as the wood 
decomposes and becomes more flammable (Fajardo et al., 2006; Sabo 
et al., 2009; Roccaforte et al., 2012; Coppoletta et al., 2016). Finally, 
within high-severity patches, regenerating ponderosa pines near re-
sidual forest edges could have higher growth rates than those found in 
the far interior because of protection from wind and sun (Oliver and 
Ryker, 1990; Li and Wilson, 1998) and proximity to available microbial 
symbionts (Nara, 2006; Grove et al., 2019; Owen et al., 2019). As the 
amount of area burned continues to increase and accumulate, there is a 
need for understanding the factors that influence seedling growth in 
order to ensure sustainable forest management practices, including 

reforestation and maintenance burning. 
The goal of this study was to understand the fine-scale post-fire 

environmental influences on the growth of naturally regenerating 
ponderosa pine seedlings. We examined: 1) understory plant, soil and 
fuel characteristics surrounding regenerating ponderosa pines 13 years 
post-fire, and 2) what characteristics were associated with regenerating 
ponderosa pine growth rates 11–16 years post-fire across different fire 
severities and unburned areas, after the Pumpkin Fire in 2000 near 
Flagstaff in northern Arizona. The Pumpkin Fire was selected because it 
had extensive patches of high- and moderate-severity fire, as well as 
nearby unburned areas. We tested the following hypotheses about niche 
characteristics and regenerating ponderosa pine growth: H1: Understory 
and exotic species cover will be greater in the high-severity burn plots 
due to the opening of the tree canopy, but understory plant richness will 
be greatest in moderate-severity burn plots, consistent with the inter-
mediate disturbance hypothesis (Connell, 1978). H2: Coarse wood cover 
and herbaceous fine fuel biomass will be greatest in the high-severity 
burn plots, but soil properties, litter and fine wood cover will be similar 
among burn severities because of the length of time since fire. H3: 
Regenerating ponderosa pine growth rates will be highest in plots with 
intermediate amounts of residual overstory canopy cover (moderate 
burn severity), compared to areas without canopy cover (high-severity), 
or unburned plots, due to the estimated effects on microsite conditions. 
H4: Regenerating ponderosa pine growth rates will have a negative 
correlation with high residual overstory canopy cover (unburned) and 
high understory cover (burned or unburned) due to competitive inter-
actions, but a positive correlation with coarse wood (high burn severity 
interior or edge) and available soil nutrients (burned or unburned). 

2. Materials and methods 

2.1. Study design 

We investigated ponderosa pine regeneration niche attributes (un-
derstory plant, fuel, and soil characteristics surrounding seedlings) 
13 years post-fire and ponderosa pine growth 11–16 years after the 
Pumpkin Fire that burned in 2000 in northern Arizona. The Pumpkin 
Fire burned approximately 6,500 ha, including 1,400 ha of high-se-
verity fire on the Kaibab and Coconino National Forests (http://www. 
mtbs.gov/; see Owen et al. (2019) for map of fire location and burn 
severity). Our plots ranged from 2,350–2,600 m elevation, with 3–20% 
slope and mostly southwest aspects. The mean 16-year (2000–2016) 
post-fire annual water year (October–September) precipitation was 
49.1 cm (Western Regional Climate Center (WRCC): https://wrcc.dri. 
edu, Accessed 2/15/2019; Fig. S1) and the mean temperature was 
7.2 °C (Prism Climate Group: http://prism.oregonstate.edu/, Accessed 
10/7/2016). This region receives most of its annual moisture from late- 
summer rains that typically occur July–August and from winter pre-
cipitation. Soils were derived from basalt and ranged from shallow to 
moderately deep, gravelly sandy to clay loam (WebSoil Survey: http:// 
websoilsurvey.nrcs.usda.gov. Accessed 10/5/16). 

We used Monitoring Trends in Burn Severity (MTBS, 2013) maps, 
ArcGIS 10.1 (ESRI, 2012), and field validation to randomly select three 
sites within each of four burn severity classes: “unburned,” “moderate- 
severity,” “high-severity edge,” and “high-severity interior.” A single 4- 
ha (200 × 200 m) plot was established at each site, for a total of twelve 
4-ha plots. Unburned plots were not burned in a wildfire or managed 
fire for the past 50+ years (Crouse, 2019). Unburned areas had high 
tree densities, ranging from 560 to 1160 trees ha−1. Moderate-severity 
plots had a spatial heterogeneity of post-fire surviving trees ranging 
from 120 to 490 trees ha−1, including small patches of high-severity 
fire < 1 ha in size. Both high-severity edge and interior plots had 100% 
tree mortality from the wildfire, but high-severity edge plots were es-
tablished adjacent to forest edges or residual live trees whereas high- 
severity interior plots were established where no surviving trees were 
found within at least 200 m from the plot boundaries (see Owen et al. 
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(2019) for site map, plot photographs and additional site selection 
criteria). 

2.2. Understory plant composition 

To test our first hypothesis that burn severity will influence un-
derstory cover and species richness, we measured plant cover variables 
within 1-m2 (1- × 1-m) quadrats surrounding 30 single ponderosa pine 
seedlings that naturally regenerated post-fire in each of the 4-ha plots, 
totaling 360 quadrats. These focal seedlings were randomly selected 
from the population of seedlings in the plots, which had been spatially 
mapped during a previous study (Owen et al., 2017). Understory plant 
cover was measured in August–September 2013. Total plant, life form 
(forb, graminoid, shrub, and regenerating ponderosa pine), exotic 
plant, and individual plant species cover were estimated by eight cover 
classes. We used the following cover classes: 0%, < 1%, 1–5%, 5–25%, 
25–50%, 50–75%, 75–95%, and > 95% in each 1- × 1-m frame, a 
method modified from Daubenmire (1959). We used the midpoints of 
the cover classes to convert estimates to quantitative values. Plants 
were identified to species in the field or collected, identified and stored 
at the USDA Rocky Mountain Research Station (RMRS) herbarium in 
Flagstaff, Arizona. Scientific nomenclature followed the USDA PLANTS 
Database (https://plants.usda.gov), and plant nativity followed the 
Flora of North America (http://beta.floranorthamerica.org). We also 
determined plant species richness in each quadrat, and estimated per-
cent overstory canopy cover (averaging 5 readings directly over each 
quadrat) using a vertical densitometer (Geographic Resource Solutions, 
Arcata, California, USA). 

We used generalized linear mixed models (GLMMs) in SAS 9.4 (SAS 
PROC GLIMMIX, 2017) to test for the effects of fire severity on un-
derstory plant cover and richness variables. Fire severity was a fixed 
effect and site was a random effect. Also included was a residual 
random effect that modeled heteroscedasticity between treatment le-
vels. We used a beta distribution for proportion of plant cover values, 
and a negative binomial distribution for richness. Beta distributions 
that included many zero values were transformed similar to Smithson 
and Verkuilen (2006). If significant differences were found, we used the 
post hoc Tukey – Kramer HSD test on least-squares means for sub-
sequent pair-wise comparisons (Kramer, 1956). We present all results as 
estimated model means with 95% confidence intervals, but true means 
and standard errors are presented in the supplementary material. 

2.3. Surface fuel and soil characteristics 

To test the second hypothesis that increasing fire severity will in-
crease surface fuels, we characterized surface fuel cover in the 1-m2 

quadrats surrounding regenerating ponderosa pines by fuel types, 
13 years post-fire. We measured percent cover of litter (dead non- 
woody plant material) together with fine wood (dead wood <  7.62 cm 
diameter), coarse wood (dead wood ≥ 7.62 cm diameter), stumps 
(bases of fallen snags), rock, and bare ground cover similar to plant 
cover variables above. We distinguished between fine and coarse wood 
using a go/no-go gauge (Brown, 1974). We examined the effects of burn 
severity on the proportion of fuel cover using GLMMs with beta dis-
tributions, fire severity as a fixed effect, and site as a random effect. 
Finally, we calculated the percentage of quadrats with seedlings 
growing near coarse wood or stumps out of the total quadrats in each 
burn severity. 

To test the hypothesis that high-severity burns will have the greatest 
herbaceous fine fuel biomass, we destructively measured it in July 2016 
(16 years post-fire) near each quadrat. We measured fine fuel biomass 
by clipping all live herbaceous plants at ground level in 0.25-m2 cir-
cular frames, at least 1 m east of each seedling quadrat, in a location 
that best replicated the conditions in the plot. The biomass samples 
were dried in an oven at 70 °C for 3 days and weighed to the nearest 
0.1 g (Moore et al., 2006). We analyzed biomass with respect to fire 

severity using a GLMM with a gamma distribution and with fire severity 
as a fixed effect and site as a random effect, but we found no hetero-
scedasticity between treatment levels so that term was not included, 
and family-wise error rate was adjusted for using the Tukey-Kramer 
method (Kramer, 1956; SAS 9.4; SAS PROC GLIMMIX, 2017). 

To explore differences in regeneration niche soil properties among 
severity classes, we measured the physical and chemical properties of 
soil from each quadrat in September 2013. Three mineral soil 
(0–15 cm) samples were collected with a soil corer (3 cm dia-
meter × 15 cm length) within the 1 × 1-m frame from each seedling 
plot and composited. Soil pH was measured following the method of  
Carter (1993) with an Orion 550A pH meter (Thermo Electron Cor-
poration, Beverly, MA). Percent silt, sand, and clay were determined by 
particle size analysis with a hydrometer, similar to Bouyoucos (1962), 
and percent gravel was determined by sieving and weighing the > 2  
mm portion of the sample. Soil aggregate stability (a measure of 

erodibility) was determined in the field for 5-cm subsurface soils using a 
soil stability kit (Synergy Resource Solutions, Inc., Bozeman, MT). Soil 
aggregates were ranked on an ordinal scale of 0 (least stable) to 6 (most 
stable) (‘slake scores’) (Herrick, 2000). Percent total soil carbon and 
nitrogen were measured on a C/N analyzer (ThermoQuest EA Flash 
1112, Milan, Italy). Finally, the concentrations of nitrate, ammonium 
and phosphate (NO3

−, NH4
+, PO4

3−) were measured on a Lachat AE 
Flow Injection Autoanalyzer (Lachat Instruments, Inc., Milwaukee, WI, 
USA) using methods described in Lachat Instruments, Inc. (1990, 2003, 
2007). We analyzed silt, sand, clay, gravel, and nutrient concentrations 
using GLMMs with beta distributions, and soil pH using GLMMs with 
gamma distributions, with fire severity as a fixed effect and site as a 
random effect. We analyzed soil aggregate stability (categorical re-
sponse data 0–6) using an ordered logit model, similar to Agresti 
(2013). We contrasted severity classes and used Tukey-Kramer com-
parisons with site as a random effect, as described above. 

2.4. Regenerating ponderosa pine seedlings 

Tree or seedling age can influence growth rates (Weiner and 
Thomas, 2001; Johnson and Abrams, 2009); therefore, we estimated 
regenerating ponderosa pine age by counting branch whorls on each 
trunk, similar to Shatford et al. (2007), so that we could include age as a 
covariate in our analyses. To verify accuracy in the whorl count esti-
mates, we destructively sampled 26 seedlings of various whorl counts 
outside of our plots and determined pith age by counting growth rings. 
We compared whorl counts to pith age using multi-response permuta-
tion procedures similar to Haire and McGarigal (2010). We found a 
significant difference between whorl counts and pith age (F = 9.68; 
p = 0.03), with whorl counts being on average 1.5 years lower than 
pith age. Therefore, we added 1.5 years to our whorl counts so they 
would be similar to pith age. It was difficult to find seedlings on the 
unburned plots that established after the fire, and unburned seedling 
whorl counts were harder to estimate because some had stunted growth 
forms, increasing uncertainty of ages compared to seedlings from 
burned plots. 

To test the third hypothesis that regenerating ponderosa pines will 
have the highest growth rates in moderate-severity burn plots com-
pared to unburned and high-severity burn plots, we measured seedling 
growth in each quadrat. In September 2016, we measured diameter at 
root collar (DRC), total height, and annual growth (the length of annual 
growth of the terminal leader from 2011 to 2015) on regenerating 
ponderosa pines in each quadrat. We measured DRC at ground level, 
similar to McPherson et al. (2016). We tested for differences in total 
height and DRC among severity classes using GLMMs with gamma 
distributions, with fire severity as a fixed effect, site as a random effect, 
and estimated seedling age as a covariate. We tested for differences in 
annual terminal leader growth among severity classes and years, and 
severity class × year interactions using a repeated measures GLMM 
with fire severity as a fixed effect and site as a random effect, and a 
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gamma distribution, and included age as a covariate. 
To test the fourth hypothesis that regenerating ponderosa pine 

growth is influenced by niche variables, we used GLMM to determine 
the relationship between niche characteristics and ponderosa pine DRC 
and annual growth rates. Predictor variables included percent overstory 
canopy cover, soil nutrients (NO3

−, NH4
+, PO4

3−), soil pH and percent 
clay and gravel content, coarse wood, forb, graminoid, shrub, exotic 
and major species cover (> 10% cover). Response variables included 
DRC and average 5-year growth rates, with seedling age as a covariate. 
We used GLMM with fire severity as a fixed effect, site as a random 
effect, gamma distributions and determined 95% confidence intervals 
in SAS 9.4 (SAS PROC GLIMMIX, 2017). 

3. Results 

3.1. Understory plant composition 

Regeneration niches differed among severity classes due to differ-
ences in overstory tree canopy cover as well as differences in cover of 
dominant understory species (Table 1; also see Table S1). Overstory 
tree canopy cover was absent in both types of high-severity burn plots, 
and lower in the moderate-severity compared to the unburned plots 
(Table 1). Additionally, we visually observed that seedlings in un-
burned plots were mostly found in localized openings with lower ca-
nopy cover. Regeneration niches in burned plots were characterized by 
higher forb, higher shrub, and exotic plant cover, and differences in 
some dominant species cover compared to unburned plots (Tables 1 and 
2). All plots had high total plant cover because they included the cover 
of the central ponderosa pine seedling, but high-severity burn plots had 
slightly higher total plant cover and 2–3 times greater shrub cover than 
moderate-severity or unburned plots. Graminoid cover was lowest in 
the high-severity edge plots. Ponderosa pine seedling cover was greatest 
in the high-severity edge plots, and exotic plant cover was lowest in the 
unburned plots (Table 1). All burn types differed from unburned areas 
in terms of dominant species cover that included the native forbs Lu-
pinus argenteus Pursh (silvery lupine), Bahia dissecta (A. Gray) Britton 
(ragleaf bahia) and Oxytropis lambertii Pursh (purple locoweed) and the 

native grass Elymus elymoides (Raf.) Swezey (squirreltail) (Table 2; also 
see Table S2). Mahonia repens (Lindl.) G. Don (creeping barberry; a 
native shrub) cover was greatest in the high-severity interior plots and 
intermediate in the high-severity edge compared to the moderate-se-
verity and unburned plots. Finally, higher exotic plant cover on burned 
plots was dominated by Bromus tectorum L. (cheatgrass, an exotic grass), 
which was absent from unburned plots (Tables 1 and 2). 

Plant species richness was lowest in the unburned plots, but similar 
among other burn severities, contrary to our first hypothesis (Table 1; 
also see Table S1). We found a total of 82 understory plant species and 
they were predominantly native and perennial (Table S3). Three species 
were found only in unburned plots, nine species were found only in 
moderate-severity plots, five species were found only in high-severity 
edge plots, and eight species were found only in high-severity interior 
plots. We found 11 exotic species, mostly in the burned plots. The most 
common exotic species found in the burned plots were cheatgrass, 
Taraxacum officinale F.H. Wigg. (common dandelion), and Tragopogon 
dubius Scop. (yellow salsify) (Table S3). 

3.2. Surface fuel and soil characteristics 

Coarse wood cover was similar between all high- and moderate- 
severity burn plots, but higher in all burned plots compared to the 
unburned plots, partially supporting our second hypothesis (Fig. 1A). 
We found that most regenerating ponderosa pines in high-severity 
burned edge (83%) and interior (77%) quadrats were growing adjacent 
to coarse wood or stumps, compared to moderate-severity (57%) or 
unburned (8%) plots (percent of quadrats that contained coarse wood 
or stumps). The cover of litter plus fine wood, and the cover of rock, 
were similar among severity classes, but stump cover was higher in all 
burned compared to unburned plots (Table S4). 

Herbaceous fine fuel biomass near ponderosa pine regeneration 
niches was lowest in the unburned plots, intermediate in moderate- 
severity plots, and greatest in high-severity burn plots, supporting our 
second hypothesis (Fig. 1B). Herbaceous fine fuel biomass was three 
times higher in the high-severity plots, and twice as high in the mod-
erate-severity plots compared to the unburned plots (Fig. 1B). 

Table 1 
Model estimated means (lower, and upper 95% confidence intervals) for percent canopy cover of total overstory trees, and understory plant, bare ground, different 
life forms (tree, shrub, forb, graminoid), exotic plants, and species richness among burn severity classes, computed from GLMMs. Different letters indicate significant 
differences among burn severity classes.         

Plant cover and richness Unburned Moderate-severity High-severity edge High-severity interior FTRT pTRT  

Overstory tree cover (%) 16.1a (8.1, 29.1) 8.9b (4.5, 15.6) 0c (0, 0) 0c (0, 0) 13.53  < 0.01* 
Total plant cover (%) 80.6a (74.0, 85.9) 84.9a (79.4, 89.2) 89.1b (84.7, 93.3) 90.4b (86.5, 93.3) 8.97  < 0.01* 
Bare ground cover (%) 4.9a (3.5, 6.9) 2.8ab (1.7, 4.3) 1.5b (0.8, 2.8) 1.2b (0.6, 2.3) 6.87 0.01* 
Regenerating ponderosa pine cover (%) 37.5a (27.3, 48.9) 40.7ab (30.0, 52.4) 57.2c (45.5, 68.2) 44.3b (30.0, 52.4) 8.27  < 0.01* 
Shrub cover (%) 0.1a (0.0, 4.3) 6.3b (8.6, 33.9) 18.2c (21.9, 68.7) 23.9c (2.9, 76.4) 11.2  < 0.01* 
Forb cover (%) 29.7a (7.2, 69.7) 59.6b (20.9, 89.2) 57.8b (19.7, 88.4) 55.7b (18.3, 87.6) 16.92  < 0.01* 
Graminoid cover (%) 70.2a (64.4, 75.4) 65.7a (60.5, 71.1) 58.6b (52.6, 64.4) 66.7a (60.8, 72.1) 2.78 0.04* 
Exotic plant cover (%) 0.2a (0.0, 3.6) 12.5b (8.9, 17.4) 34.9b (29.1, 41.3) 35.2b (29.4, 41.5) 16.47  < 0.01* 
Total Richness (species m−2) 4.9a (3.1, 7.6) 7.9b (4.9, 12.7) 8.5b (5.2, 13.7) 9.0b (5.5, 14.6) 39.3  < 0.01* 

Table 2 
Model estimated means (lower, and upper 95% confidence intervals) for dominant understory plant species cover (> 10% cover in one severity class) among severity 
classes, computed from GLMMs. Different letters indicate significant differences among severity classes. ♦Indicates non-native, exotic species.         

Dominant understory plant species cover (%) Unburned Moderate-severity High-severity edge High-severity interior FTRT pTRT  

Bahia dissecta 0.2a (0.0, 3.1) 5.4b (0.3, 56.3) 14.0c (0.6, 81.9) 5.6b (0.3, 57.4) 10.42  < 0.01* 
Bromus tectorum♦ 0.0a (0.0, 0.1) 10.0b (2.4, 33.3) 13.4b (3.1, 42.7) 22.0c (4.9, 59.5) 5.83  < 0.01* 
Elymus elymoides 1.3a (0.3, 5.1) 23.7b (6.1, 59.8) 15.1b (3.8, 44.0) 13.1b (3.4, 39.3) 12.1  < 0.01* 
Festuca arizonica 49.7a (42.4, 56.9) 30.19b (21.6, 40.3) 19.3b (9.6, 34.9) 27.7b (19.7, 37.4) 7.49  < 0.01* 
Lupinus argenteus 3.4a (0.2, 37.9) 8.5b (0.4, 67.8) 13.9b (0.6, 80.0) 9.5b (0.5, 70.9) 6.66 0.01* 
Mahonia repens 0.0a (0.0) 0.1a (0.0, 14.0) 3.4b (0.0, 95.4) 6.7c (0.0, 97.7) 17.91  < 0.01* 
Muhlenbergia montana 45.1 (29.5, 61.8) 43.4 (29.4, 58.6) 33.4 (16.7, 55.5) 11.2 (1.5, 51.3) 1.39 0.25 
Oxytropis lambertii 0.5a (0.1, 16.8) 33.6b (15.5, 58.4) 29.8b (11.9, 57.0) 34.6b (14.1, 63.0) 4.86  < 0.01* 
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We found that soil properties differed among severity classes, con-
trary to our second hypothesis (Table 3; see also Table S5). Percent total 
C and N were greatest in the high-severity interior burn plots, con-
centrations of soil NO3

− and NH4
+ tended to be higher with increasing 

burn severity, soil pH was lowest in the unburned plots, and the con-
centration of soil PO4

3− was similar among severity classes (Table S5). 
Soil texture was relatively similar across severity classes, with all 
classified on the interface between loam and clay loam. However, sta-
tistical differences were detected in sand content, ranging from ~28% 
in unburned plots to ~34% in high-severity interior plots, with inter-
mediate levels in high-severity edge and moderate-severity plots. In 
addition, soil clay content, ranging from ~23 to 28%, was higher in the 
unburned plots compared to the burned plots (Table 3). Gravel content 
also differed, ranging from ~19% in unburned plots to ~27% in 
moderate-severity and ~29% in high-severity interior plots, with in-
termediate levels (~24%) in high-severity edge plots (Table 3). Percent 
silt content was similar among severity classes. Finally, soil stability 
was variable within each of the burn severity classes, with most scores 

falling within an intermediate stability range, but similar among se-
verity classes (Fig. S2). 

3.3. Regenerating ponderosa pine seedlings 

Regenerating ponderosa pines had high survival rates throughout 
the course of our study; only 4 of the 360 seedlings in our study died 
between 2013 and 2016 (three in high-severity interior and one in 
moderate-severity burn plots; estimated ages were 5–6 years old). The 
estimated year of establishment for post-fire regenerating seedlings 
ranged from 2001 to 2008 with the majority establishing in 2005, the 
wettest water year of the study (Fig. S3). 

Ponderosa pine growth varied among severity classes and years but 
was generally highest in the high-severity edge plots, contrary to our 
third hypothesis (Fig. 2A, B, and C). Ponderosa pine DRC was greatest 
in the high-severity burned plots, intermediate in moderate-severity, 
and lowest in the unburned plots (Fig. 2A). Ponderosa pine seedlings 
were taller in the high-severity edge plots compared to other severity 

Fig. 1. A) Percent coarse wood cover was lowest in 
the unburned compared to all burned plots. B) 
Herbaceous fine fuel biomass near regenerating 
ponderosa pines was lowest in the unburned plots, 
intermediate in moderate-severity, and greatest in 
both high-severity edge and interior plots. Boxplots 
represent the variation between sites and span the 
first to the third quartile. A center line represents 
the median, and the “whiskers” above and below 
the box represent the minimum and maximum va-
lues. Model estimated means (lower, and upper 
95% confidence intervals) are shown in Table S6. 

Table 3 
Model estimated means (lower, and upper 95% confidence intervals) soil texture from 0 to 15 cm mineral soil, computed from GLMMs. Sand, silt and clay make up 
100% of the < 2 mm portion of the soil sample, and gravel content is a percentage of the entire sample collected. Different letters indicate significant differences 
among severity classes.          

Fire severity   

Soil property Unburned Moderate High-edge High interior F p  

Gravel (%  >  2 mm) 19.3a (14.3, 25.6) 27.4c (21.6, 35.4) 24.2b (18.1, 31.7) 28.9c (21.8, 37.2) 23.2  < 0.01* 
Sand (%  < 2 mm) 28.0a (23.5, 33.1) 31.2b (26.2, 36.6) 31.3b (26.4, 36.8) 34.3c (29.0, 39.9) 7.3  < 0.01* 
Clay (%  < 2 mm) 28.5a (26.2, 30.9) 27.0b (24.7, 29.3) 26.9b (24.6, 29.2) 23.4b (21.3, 25.6) 7.1  < 0.01* 
Silt (%  < 2 mm) 43.8 (40.5, 47.2) 41.8 (38.7, 45.1) 41.7 (38.6, 45.0) 42.4 (38.7, 45.1) 0.6 0.62    
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classes, even though seedlings were on average older in unburned plots 
(Fig. 2B). We found significant severity class × year interactions 
(F = 2.40; p  <  0.01) for terminal leader growth, therefore we ana-
lyzed groups separately. Seedlings on unburned plots had the lowest 
terminal leader growth among the plot types (Fig. 2C). Ponderosa pine 
terminal leader growth in 2011 (F = 9.06; p  <  0.01) was higher in all 
burned compared to unburned plots (Fig. 2C). Ponderosa pine terminal 
leader growth in 2012 (F = 12.87; p  <  0.01) was greatest in the high- 
severity plots, and in 2013 (F = 13.41; p  <  0.01), and 2014 
(F = 17.96; p  <  0.01) was greatest in high-severity edge plots, in-
termediate in both moderate- and high-severity interior plots, and 
lowest in the unburned plots (Fig. 2C). Finally, ponderosa pine terminal 
leader growth in 2015 (F = 6.68; p  <  0.01) was greatest in the high- 
severity edge and moderate severity plots and lowest in the unburned 
plots. 

Some niche characteristics were correlated with ponderosa pine 
seedling growth as we expected (Figs. 3 and 4). For example, there was 
a positive correlation between ponderosa pine DRC and surrounding 
percent cover of coarse wood, forbs and mountain muhly, and a positive 
trend with the concentration of soil phosphate (Fig. 3). Ponderosa pine 
terminal leader annual growth over 5 years from 2011 to 2015 was 
partially explained by positive correlations with surrounding percent 
cover of coarse wood, forbs, and mountain muhly, and soil PO4

−3, and 
a negative correlation with overstory tree canopy and E. elymoides cover 
(Fig. 4). We also found a trend of positive correlation between pon-
derosa pine growth rates and percent shrub cover (Fig. 4). Ponderosa 
pine DRC and growth rates were not correlated with soil pH, clay 

content, NH4
+, or NO3

−, surrounding exotic or other dominant un-
derstory species cover, contrary to our hypothesis (all p  >  0.1). 

4. Discussion 

4.1. Understory plant communities 

We found that a wildfire with large, high-severity burn patches had 
decadal-scale impacts on understory plant composition surrounding 
naturally regenerating ponderosa pines. Both moderate- and high-se-
verity burn plots had mostly native, diverse and productive understory 
plant communities, similar to other long-term studies after large, 
mixed-severity wildfires (Abella and Fornwalt, 2015; Gibson et al., 
2016). All burn plots had greater species richness than unburned plots 
similar to other studies that have shown that understory species rich-
ness and productivity can increase with moderate-severity burns 
(Abella and Fornwalt, 2015; Burkle et al., 2015), and can either in-
crease (Kuenzi et al., 2008; Shive et al., 2013) with high-severity burns, 
or remain similar between different burn severities (Crawford et al., 
2001), in mainly ponderosa pine-dominated forests. The trend of 
greater forb and shrub cover on our high-severity burn plots was also 
similar to findings in previous studies (Barton, 2005; Shive et al., 2013; 
Abella and Fornwalt, 2015). Evidence suggests that severe burning 
could either lead to a dominance in shrub communities (Savage and 
Mast, 2005; González-De Vega et al., 2016), or regenerating pine can 
establish beneath or near shrubs and eventually overtop them 
(McDonald, 1990; Vankat, 2013). Finally, most of the exotic plant 

Fig. 2. A) Regenerating ponderosa pine diameter at root collar (DRC) was lowest in the unburned plots, intermediate in moderate-severity, and greatest in both high- 
severity edge and interior plots. B) Regenerating ponderosa pine total height was higher in high-severity edge plots compared to other severity classes. C) 
Regenerating ponderosa pine terminal leader annual growth varied among severity class and year but was mostly highest in the high-severity edge plots. Ponderosa 
pine DRC, total height, and leader growth estimated for 2011–2015 were measured in 2016. Boxplots in A and B represent the variation between sites and span the 
first to the third quartile. A center line represents the median, and the “whiskers” above and below the box represent the minimum and maximum values. Model 
estimated means (lower, and upper 95% confidence intervals) are shown in Table S6. 
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species found on our plots are not considered long-term threats to na-
tive communities or ecological function, except for Bromus tectorum 
(cheatgrass) (Sieg et al., 2003; Keane et al., 2008; Fornwalt et al., 
2010). Cheatgrass is a highly invasive annual grass that can outcompete 
native plant species (Young et al., 1987; Keane et al., 2008). We did not 
find evidence that ponderosa pine growth was impacted by surrounding 
shrub or exotic species, but forb cover had a positive correlation with 
ponderosa pine growth. 

Both forb and Muhlenbergia montana (mountain muhly) cover were 
important, positively correlated variables for regenerating pine growth, 
providing evidence for facilitation, or for similar habitat preferences, 
yet surrounding squirreltail cover was negatively correlated with pon-
derosa pine growth. Mountain muhly along with squirreltail and Festuca 
arizonica (Arizona fescue) were the most dominant grasses across burn 
severity classes, but mountain muhly cover was lowest in the high-se-
verity burn plots, and squirreltail cover was lowest in the unburned 
plots. Mountain muhly is more shade-tolerant than Arizona fescue and 
squirreltail, and a less-aggressive competitor than Arizona fescue 
(Pearson, 1942; Larson and Schubert, 1969). There could be a positive 
interspecific interaction between mountain muhly and regenerating 
ponderosa pines on sites with some tree canopy (Pearson, 1942). 
Muhlenbergia spp. and forb cover in other studies had positive effects on 
ponderosa pine seedling densities and survival (Pearson, 1942; Puhlick 
et al., 2012; Ouzts et al., 2015). Similarly, forb cover may have a po-
sitive interspecific interaction with regenerating ponderosa pines in the 
high-severity burns, providing some protection from wind, sun and 
frost. This interaction is consistent with the “stress gradient hypoth-
esis,” which predicts that with increasing abiotic stresses, facilitative 
interactions among plants are stronger than competitive interactions, 
and some species can mitigate stressors to create more favorable habitat 
by providing some protection from wind and sun (Bertness and 
Callaway, 1994). Alternatively, the co-occurrence of seedlings with 
forbs and mountain muhly may simply be due to better conditions for 
all understory plants in places with low overstory tree canopy cover. 
Even in the unburned plots, it appeared that regenerating ponderosa 

pines were mainly found under small canopy openings within the dense 
forest. Finally, the negative correlation between squirreltail cover and 
ponderosa pine growth may be linked to the fact that squirreltail, due to 
its C3 photosynthetic pathway with growth early in the growing season 
(Jones, 1998), is a more effective competitor for water than established 
pine seedlings. This competitive advantage of squirreltail, especially 
during droughty conditions typical in the spring in Arizona, may con-
tribute to lower pine growth rates. However, Elliot and White (1987) 
found in a controlled experiment that squirreltail, in contrast to other 
graminoids, did not reduce growth of newly planted ponderosa pine 
seedlings. More research is needed to understand this competitive re-
lationship. 

4.2. Fuel and soil characteristics 

Severe fire led to increases in coarse wood, consistent with other 
studies (Roccaforte et al., 2012; Bassett et al., 2015), and ponderosa 
pine growth had a positive correlation with coarse wood cover. We 
expected coarse wood to have a positive effect on regenerating pon-
derosa pine growth by providing extra moisture or protection from 
wind and sun (Sánchez Meador and Moore, 2010; Castro et al., 2011).  
Flathers et al. (2016) also found that young (1–2 years old) ponderosa 
pine seedling density and diameter were positively associated with 
litter cover. Coarse wood can improve the probability of ponderosa pine 
seedling survival during drought conditions (Hill and Ex, 2020); how-
ever, increased coarse wood and fine fuel biomass adjacent to re-
generating pine seedlings would also put them at increased risk of 
mortality from surface fires during dry conditions when coarse wood 
could contribute to high fire intensity, until the seedlings are taller and 
more fire resistant (Estes et al., 2012; Westlind and Kerns, 2017). 
Seedlings were on average < 2 m tall on all severity classes from our 
study, but if seedlings on the high-severity plots continue to increase in 
height and diameter, it may help them survive a subsequent low-se-
verity fire (Gaines et al., 1958; Bailey and Covington, 2002; Battaglia 
et al., 2009). 

Fig. 3. DRC was partially explained by a positive correlation with surrounding coarse wood, forb and mountain muhly (Muhlenbergia montana), cover. There was a 
trend for a positive correlation between DRC and the concentration of soil phosphate. GLMM fit is shown with 95% confidence limits. 
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We expected similar soil properties among severity classes because 
of the length of time since fire, comparable to studies in ponderosa pine 
forests after severe fire (from pile burning) (Covington et al., 1991; 
Covington and Sackett, 1992), but others have found long-term re-
ductions (DeLuca et al., 2002), or increases (Brais et al., 1995; Turner 
et al., 2007) in available nutrients and soil pH (reviewed in Certini 
2005) after severe fires in boreal forests. Additionally, severe fire can 
either increase nitrogen mineralization rates (Grady and Hart, 2006), or 
nitrification rates decades after fires (Kurth et al., 2014) in different 
ponderosa pine forests, likely from a change in the quality of carbon 
inputs from overstorny pine needles to more herbaceous inputs. We 
anticipated that more soil variables, such as available N, would corre-
late with ponderosa pine growth. There is evidence of N limitation in 
some ponderosa pine forests (Menge et al., 2012), but on our sites soil 
PO4

3− was more correlated with plant growth. Previous studies have 
shown that southwestern ponderosa pines that were fertilized with both 
N and P had greater diameter growth, but not height (Wagle and 
Beasley, 1968; Heidmann, 1985). Weathering of mineral P is a slow 
process, and fine root turnover and the role of symbiotic mycorrhizal 
fungi in P-uptake are likely contributing to the correlation between 
PO4

3− and regenerating pine growth (Schlesinger, 1991; Allen, 1991; 

Delucia et al., 1997). The differences in percent gravel, sand, and clay 
among our plots, although statistically significant, are probably not 
ecologically impactful, and it is unlikely that the differences are the 
result of variations in fire severity (reviewed in Certini, 2005). Studies 
such as Puhlick et al. (2012) that have documented effects of soil tex-
ture on ponderosa pine regeneration densities incorporated a much 
larger range in clay content (e.g., 7–28%) than our study incorporated 
(23–28%). Thus, it is not surprising that we did not find evidence that 
soil texture influenced seedling growth. 

4.3. Ponderosa pine seedling growth after high-severity fire 

Our results suggest that if seedlings can establish in the high-se-
verity burns, their growth may not be inhibited by site conditions 
11–16 years following the fire, unless they are growing near dense 
patches of squirreltail. Younger (1–2 years old) ponderosa pine seedling 
height can be positively associated with overstory basal area (Flathers 
et al., 2016), but older seedlings and saplings require more sunlight to 
grow and survive (Chen, 1997), and our results support this. Ponderosa 
pine seedlings tended to have the greatest growth rates in high-severity 
edge plots, potentially from receiving some shading and wind 

Fig. 4. Ponderosa pine terminal leader annual growth over 5 years from 2011 to 2015 was partially explained by a positive correlation with surrounding percent 
coarse wood cover, forb cover and soil phosphate, and a negative correlation with percent overstory tree canopy cover and surrounding squirreltail (Elymus 
elymoides) cover. There was a trend for a positive correlation between terminal leader annual growth and shrub cover. GLMM fit is shown with 95% confidence limits. 
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protection or connecting to symbiotic soil mycorrhizal networks ad-
jacent to forest edges (Nara, 2006). Results from a recent study in this 
area suggest that large patches of high-severity fire have long-term 
consequences to mycorrhizal sporocarp communities, even on plots 
adjacent to unburned forests, but greater impacts to mycorrhizal root 
tip communities in the interior burn patches (Owen et al., 2019). Re-
generating ponderosa pines from our study had already survived the 
high-mortality stage, within the first few years of germination (Pearson, 
1950; Shepperd et al., 2006), and their variation in estimated age 
suggests that regeneration was episodic, similar to findings by Haire 
and McGarigal (2010). We did not observe any cone-producing pon-
derosa pine seedlings or saplings on our plots, but if the current seed-
lings survive and are able to reproduce, their reproduction will help to 
fill in treeless gaps. Since 2013, only four out of the 360 seedlings we 
measured died, in contrast to high mortality rates (averaging 75%) of 
ponderosa pine seedlings planted 5 to 8 years earlier across the SW 
(Ouzts et al., 2015). However, all seedlings, whether naturally estab-
lished or planted likely face additional challenges such as fire, drought, 
herbivory, or disease that could reduce their survival rates (Huffman 
et al., 2012; Waring and Goodrich, 2012; Savage et al., 2013; Iniguez 
et al., 2016; Rother and Veblen, 2016). Additionally, even though we 
found high post-fire ponderosa pine survivorship, establishment in the 
high-severity burned areas was low, ranging from 20 to 73 ponderosa 
pine seedlings ha-1 (Owen et al., 2017). 

5. Conclusions and management implications 

Large, high-severity wildfires in ponderosa pine forest are expected 
to become more common in the future, furthering the challenge for 
natural ponderosa regeneration, which may already be constrained by 
climate in some areas (McDowell et al., 2016; Petrie et al., 2016; 
Stevens-Rumann et al., 2018, Stevens-Rumann and Morgan, 2019; 
Davis et al., 2019; 2020). Our results indicate long-term changes to 
understory plant communities and fuel loads from fire, especially severe 
fire, and some of these variables were associated with ponderosa pine 
seedling growth 11–16 years post-fire. We found potential evidence of 
facilitation from some surrounding plant and coarse wood cover. Local 
adaptations from seedlings that can establish and survive after high- 
severity fires and surrounding seed sources may be critical for pon-
derosa pine survival in future climates (Lucas-Borja et al., 2017; 
Gehring et al., 2017; Patterson et al., 2019). Managers may want to 
consider the tradeoff of using managed fire to reduce woody fuels or 
protect post-fire seedlings and seed sources by: 1) postponing pre-
scribed fire treatments around regenerating seedlings until their crowns 
are taller and they have thicker bark to increase the probability of 
survival, which may take 15 years or longer in some areas (Bailey and 
Covington, 2002; Shepperd et al., 2006; Battaglia et al., 2009); 2) 
burning when woody fuel moisture is high to retain some large bran-
ches and logs in high-severity burn patches, because our results indicate 
they may be important for growth, and others have shown they en-
courage conifer regeneration and beneficial microbial populations 
(Sánchez Meador and Moore, 2010; Castro et al., 2011); 3) accept the 
tradeoff that burning to reduce the heavy surface fuels may result in 
high regeneration mortality, due to increased fire radiative energy and 
long duration burning (Monsanto and Agee, 2008; Hudak et al., 2016); 
or 4) protect ponderosa pine trees near high-severity burn edges so they 
may provide additional shading and wind protection for regenerating 
seedlings, and increase seed sources for future regeneration (Stephens 
et al., 2018; Coop et al, 2019; Dodge et al., 2019). 

It is becoming increasingly apparent that predictions of warmer 
climates and increased occurrences of large, high-severity wildfires 
should be factored into post-fire treatment plans (McDowell et al., 
2016; Abatzoglou and Williams, 2016; Kitzberger et al., 2017). Climate 
change is predicted to result in large-scale vegetation shifts in south-
western forests (Flatley and Fulé, 2016; Parks et al., 2019). Non- 
forested high-severity burn patches or alternative vegetation types can 

be areas of resilience to climate variability and to subsequent fire 
within portions of the pine-dominant landscape (Coop et al., 2016; 
Schoennagel et al., 2017, Parks et al., 2018). However, if management 
goals are to restore ponderosa forests that are not regenerating natu-
rally, planting pine seedlings in high-severity burn patches could be an 
option (Ouzts et al., 2015). Planting in low density, spatially hetero-
geneous patterns would avoid increasing future fire severity (Thompson 
et al., 2007; North et al., 2019). Our results suggest planted pines may 
have improved growth near some coarse wood or forb cover, but they 
may be at risk from future fires until they are tall enough (> 1.2 m to 
3 m) to increase their chances of survival (Gaines et al., 1958; Bailey 
and Covington, 2002; Battaglia et al., 2009). 
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